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Renormalized field theory and particle density profile
in driven diffusive systems with open boundaries
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We investigate the density profile in a driven diffusive system caused by a plane particle source perpen-
dicular to the driving force. Focusing on the case of critical bulk derwsitye use a field theoretic renormal-
ization group approach to calculate the densifg) as a function of the distance from the particle source at
first order ine=2—d (d denotes the spatial dimensjofford=1 we find reasonable agreement with the exact
solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field
profile are computed fod=2 with the resultc(z) —c~z [ In(2)]?® for z— . [S1063-651%96)03105-4

PACS numbg(s): 05.40:+j, 05.70.Fh, 64.60.Ak, 66.30.Dn

I. INTRODUCTION boundary az=L leaves the system, i.ec(L)=0, then the
current is maximized in the sense that
It is well known that in thermodynamic systems with
longe-range correlations boundaries have a considerable in- j(©)=maxj(c)|0=c=c(0)} (1)
fluence on physical quantities even at macroscopic distances
from the surface. During recent decades this effect has been ) .
investigated extensively in the context of surface critical'©" L—c. As a direct consequence of this principle the bulk

phenomenda review is given in Ref.1]). It has been shown density ?S at the maximum poim:f of the function; (c) and
that the critical behavior near a boundary is governed b h? pr%flleodica*yi or|1_ly algebraically from boundary to bulk
universal scaling laws with new critical exponents that can- alg?acle%(tl )E]Z e/xcéx(ct)densit rofile in one dimension has
not be expressed in terms of bulk exponents. The renormaBe Y y P

ization group has proved to be a useful method for the clas, en calculated ~for - arbitrary boundary conditions
- . . 0< , < ,15. k fi d -
sification of both statid1-5] and dynamic[6—8] surface 0=c(0),c(L)=1 [14,19. These works confirm and gener

: . alize a large part of the results obtained in R&f].
universality classes. , Until now no exact solutions have been found for more

While in equilibrium systems long-range correlations oc-compjicated problems such as driven diffusion in higher di-
cur if the thermodynamic parameters appr_oa_ch a criticalpensional systems, at a critical pojs], or in a medium
point, they seem to be the rule in nonequilibrium systemsyjith quenched disordéd7]. In these cases the field theoretic
with conserved dynamid®,10]. In this paper we study the approach is useful in obtaining systematic approximations
diffusion of particles subject to a driving force in a systemfor density profiles or correlation and response functions. In
with open boundaries. Here the particle conservation in conthe present paper we use the exact solution of the one-
junction with the deviation from detailed balance leads todimensional asymmetric exclusion model foundi4,15 to
long-range correlations and anomalous long-time behaviotest the accuracy of the renormalization-group improved per-
[11] even at temperaturd&> T, above the critical poinfor  turbation theory. We also extend the analysis to two-
a review se€10]). Especially interesting from a physical dimensional DDS.
viewpoint are surfaces that act as particle reservoirs and thus In the next section we present the semi-infinite extension
break the conservation law. In the case of boundaries perpenf the continuum model for DDS introduced in REE1]. In
dicular to the driving force that we consider in the presentSec. 1l the boundary conditions are discussed and the den-
paper a particle reservoir is necessary to maintain a nonvaity profile is calculated in a mean field approximation. Hav-
ishing steady current. ing introduced the renormalization factors that are required

A simple microscopic realization of a driven diffusive to obtain a well-defined renormalized field theory in Sec. IV
system(DDS) is a lattice gag12] with hard core repulsion we calculate the Gaussian fluctuations around the mean field
and nearest neighbor hopping. In a homogeneous state pfofile. We use the renormalization group to compute the
density (particles per lattice sijec the external fieldfavor-  universal scaling function for the profile at first order in
ing jumps in the positive direction produces a steady par- e=2—d and compare our result with the exact one-
ticle currentj(c). Due to the excluded volume constraint the dimensional profile. Fod=2 we obtain the logarithmic cor-
current vanishes if every site is occupied by a particle, i.e.rections to the mean field solution. Section V contains a dis-
j(1)=0, while j(c)~c for c<1. In a work by Krug[13] on  cussion of our findings and an outlook. In Appendix A some
boundary-induced phase transitions the general form of theechnical details of the calculation of the surface divergen-
density profile has been discussed. It has been shown that te&s at one-loop order are given. In order to compare our
bulk densityc satisfies the following maximum current prin- perturbative result with the exact solution we have to take
ciple: If the boundary az=0 is in contact with a particle the continuum limit of the exact profile. This is done in Ap-
reservoir of densityc(0) and every particle that reaches the pendix B.
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Il. THE MODEL with ¢,>c¢*>c, the particle density far in the bulk takes the
value c*, which maximizes the functior(c). In this case
we havefo«—«'(c*)=0 andge« — «"(c*)>0, and the den-

. - . -~ sity decreases only algebraically from the boundary value to
subject to a driving force. The anomalous long time behawofhe bulk value. Since we are interested in the behavior of the

of this DDS was studied by Schmittmann and one of1H system near one of the boundaries we may effectively con-
by renormalization group methods. The equation of motion Y y y

for the particle densitg(r,t) in this model is given by the sider a semi-infinite system with bulk densiey=c”, i.e.,

] : f=0.
continuity equation Appropriate boundary conditions for diffusive semi-

P infinite systems have been derived [ih,8]. This approach
Ec(r,t)+Vj(r,t)=0. (2 crucially rests on the assumption of detailed balance. In Ref.
[11] it was shown that the dynamics defined by the bulk

Here the currenj(r,t) consists of a diffusive part, a contri- StOChaSt'.C eq_uatlons of motid8,6) with f=0 .Sat'.Sf'eS this

assumption ifw=o/p=1. Under renormalization group

ion he driving for n ri r(r . . .

\k/)vtfjwtigh ig (:gssi?ngg tto iucrinmagzeoti,e?fegtsao??hgﬁ(as,:)rhicrot-ranSformat'ons the <_:oupl|ng constamflows to the dgtalled

scopic degrees of freedom: balancg Va|y®V*=1 |f.ds2. Ford>2 the system displays
mean-field-like behavior. It should be remarked thatvierl

j(r,t)=—DVc(r,t)+ x(c(r,t))E+jg(r,t). (3)  the correlations are long ranggtb]. Thus ford<2 the vari-

able (w—1) plays the role of a dangerously irrelevant cou-

This form of the current can—in principle—be derived from pling and its effects have to be studied.

the microscopic dynamics by a suitable coarse graining. To set up a renormalized field theory it is convenient to

Since the external fielé introduces an anisotropy into the recast the bulk model in terms of the dynamic functional

system the coarse graining in general gives rise to an anis$20-25,11

tropic matrix of diffusion constantd.

Expanding the conductivityx(c) in the deviation
s=c—c of the density from its uniform averadbulk) den- 7b['§,s]=f dtf ddr
sity ¢, we have v

Some time ago, van Beijeren, Kutner, and Sp¢h8]
introduced a continuum model for the diffusion of particles

$os+ N (V,3)(V,.9)+p(d8)(9)9)

|

Neglecting higher order terms in this expansion one obtains 7)
the Langevin equation

K(C)=k(C)+«'(C)s+3k"(C)S?+ - . (4) +f(aH'§)s+%g(aﬁ)sz—(vﬁ)z—a(aﬁ)z

1 where’s is a Martin-Siggia-Rose response figl#6]. The
as(r,)=N(A, +pdf)s(r,t)+\a)| fs(r,t)+ Egs(r,t)2> range of integration with respect tois the d-dimensional
half spacev={r=(r, ,z)|r, e R%"%,z=0}. Correlation and

+£(r,1), (5  response functions in the bulk can now be expressed as func-

. o tional averages with weight exp(7,). Forw=a/p=1 the
wherefx —Ex'(c) andg=—E«"(c), and the indice§ and  functional 7, can be written in the detailed balance form
L distinguish spatial directions parall¢longitudinal”) and  [24,25
perpendicular (“transverse” to the driving force. The

Langevin force{= —Vjg is assumed to be Gaussian with SH
zero mean and the correlatiotafter a suitable rescaling of jb[‘sj,s]:J dtf ddr("s' dis+ Rb(é—é—g) ] 8
s) v
(L DL t))y=—=2N(A, +adf) S(r—r")8(t—t'). © with the reaction kernel
6
It was shown il 11] that the model defined by Eg&) and _ - < 9 -
(6) is complete in the renormalization group sense; i.e., fur- Ro=N (V.V. +pdd)) + §(¢9”s Sap) |- ©

ther contributions t@5) and(6) as well as non-Gaussian and
non-Markovian parts of the Langevin forces are irrelevant . . )
for the long-time and large-distance properties of the systerhi€reVanda act to the left, whilev andJ act as usual to the
as long as the diffusion constants are positive. right. The Hamiltonian

For an infinite system the term proportional to the cou-
pling constantf in the Langevin equatiof5) can be elimi- 1
nated by a suitable Galilean transformatjdd]. Such a Gal- T s]= f ddris(r)z (10
ilean transformation can of course not be applied to a system v
with time independent surfaces perpendicular to the driving
force. However, Krug has shown3] that in a system with  defines the purely Gaussian stationary state distribution. Ob-
open boundaries in which the particles are driven from aviously, 7, now obeys the detailed balance symmetry
reservoir of densityc; to a second reservoir of density  [24,25
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s(t)——s(—t), easily seen that for the Hamiltonia# only irrelevant sur-
face terms can be constructed. Thas has the form(10)
-~ ~ o - also in the semi-infinite case. To retain the detailed balance
s(=s(—)= 5| =s(=0=s(=t). (D form (9) of 7 we can only modify the reaction kernéd)

B Ry,—R=Rp+R;. Such a modification has to describe the

The last equation implies in particular that breakdown of particle conservation due to the reser&jir
B The relevant contributions that respect the symméity are
(s(r,t)s(r',t"))y=0(—t"){s(r,t)s(r',t")). (12
Ri=\[C+b(s—25)]8(2) (13
We now turn to the surface contributiong,; in the full
dynamic functional7= _7,+ 7, arising from the boundary up to redundant terms. Since the kerRehas to be positive
layer atz=0. Locality is assumed for the bulk and the sur-for reasons of stability it follows that>0. This completes
face. Therefore 7; should be written as a our construction of the dynamic functional in the case of
(d—1)-dimensional integral over surface fields alone. It isdetailed balance. We eventually get

/7['§,S]=Jdtj ddr["s' as+R 55?—'5) ]=f dtfvddr{§r9ts+A[(Vﬁ)(VLs)+p((9n'§)((9n5)]+%Kg(ﬁﬁ)sz
—)\[(Vl'§)2+p(au'§)2]}+J dtJ 1 \[TS(s—F)+ BS(s—F)(s—25) - 1gae?]. (14)
Vv

We now consider the modifications that we expect if detailecsurface source’él, J;. In Eg. (16), S; and s, denote the
balance does not hold. First of all, the bulk functional issurface fields and we have used the abbreviations
given by (7) with a noise constant independent of the

diffusion constanp. In addition, the different surface fields ~ -
that show up in(14) are now independent, and a boundary (J,s)—J dtJVd rJs (17
source has to be added to the equation of mot®reading
to a term linear irs; . We thus get for the surface dynamic and
functional
(Jl,ss):f dtLVdd‘lrLJlss. (18

)= f dt f Vd"%ﬂ(c"s’s—?:’"s’ 2_F5+ %ga'é'sz
J
To obtain the boundary conditions that are determined by the
1 _, ~3 surface functional7; we exploit the invariance of with
~59%S S+ 59cS - (15) respect to a shift of the fields ands. This invariance im-
plies the equations of motion
In Egs.(14) and(15) we have omitted the surface operators

SIS, S0nS, Sd,8, dnS, and 938 (where g,= g means the (8 7a)3.03,0y=IafOr A=S, s, S, sq, (19
normal derivativg since they can be expressed in terms of . _ ~
the composite fields retained igi; (see also beloy with the notationJs=J, J5=J, Js =J;, andJz =J;, re-

We remark that we have always used the prepoint timepectively, and
discretization in the construction of the dynamic functional ) )
[24,25. This corresponds to the definitidd(t=0)=0 and 8 75=0s—N[(A, +pdf)s+fas+ 399,
thus allows us to omit alfmeasurgtermso®(0) in 7. ~
‘ pterms=6(0) in 7. ~2(A, +0d})3], (203

lll. EQUATIONS OF II\DAF?SEI_NEAND MEAN FIELD 8 7= —(9{§—)\[(AL+p&ﬁ)’§—f&“'§—g((9|§)s],
(20b)

Introducing the functional ~ — 9
5,;ng=)\[—pans+ 200d,5+(c—f)sg—2CSs+35(0,—0)Ss

2[3,3:3,.3:1= f 8, slexd — 75,81~ 71[5s,54] — gb8sSs+ 395 2y, (200
+(j,§)+(J15)+(31y§s)+(less)] (16) 5;}735:)\(_17‘9n§""C‘-é's*."—gagsss_%gb‘-§ g) (200)

we may write correlation and response functions as derivaEquations(19), (209, and(20d) show thatd,s and d,s can
tives of Z with respect to the bulk sources J and the be expressed in terms of the surface operators included in
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The Fourier transfornﬁAsql (z,2") of the free(Gaussiah
propagatoKs(r, ,z;t)s(0,z’;0)) is the solution of the differ-
ential equation

7p - The redundance &dps, SsdyS, andsgd,s follows by
differentiating (d,,s) and(d,s) with respect toJ; and J,,
respectively.

SettingJ=J=J;=J;=0 in (19) we obtain from(203 the

equation (io+ g2 —\pd2)Gq (22)=08(z—2") (29
3 poP(2) +10(2) +39(s(r, ,Z,1)*)]=0 (21) with the boundary condition

for the steady density profild(z)=(s(r, ,z;t)). Using the R , R

boundary conditiord, =0, which follows from our defi- pdzGq, o(2,2')]z7=0=CGyq, ,(2,0). (26)

nition of s, an integration with respect yields

This follows in a straightforward way from the terms bilinear
in’s ands of the functional 7, (with f=0) and Eqs(19)
and (20d). The solution is given by

p®'(2) +f®(2)+39[C(2) — Cpupt P(2)’]=0, (22

where the functionC(z)=([s(r, ,z;t)—®(2)]?) (with the
bulk valueCy,,) describes density fluctuations. The bound-

ary condition az=0 follows from (20¢) and(22) as o Klz-2'11\

(ABqL w(z2,2')=

- 2\\pk
c®o+39a[C(0) +DF]— 39 Coui=hy . (23 Vo
—cl "y
Note that equal time expectation values such as + u_e—'ﬂﬂ le (27)
(s(t)"s(t)™ with m>0 are zero as a consequence of our k+cl\p

prepoint time discretization. The functid®(z) contains an
ultraviolet divergence proportional t8(0) =Af’ 1AH (where
A, and A are cutoff wave numberswhich cancels in Eq.
(22) for z>0.

The mean field profile is the solution of E@?2) for van-
ishing fluctuations, i.e.C(z)=0. In the casef=0, which
describes the maximum current phase, we obtain

with

i

X (28)

1/2
2
"

.

The parametec occurring in the surface functiong¥; and
in the propagator describgfor c>0) the suppression of
density fluctuations by the particle reservoir at the boundary
z=0. Since its momentum dimensionds- \/;M the asymp-
totic scaling behavior is governed by the fixed point
c,=0o. This means that up to corrections to scaling the
boundary condition(26) may be replaced by the Dirichlet
boundary conditions(z=0)=0 ands(z=0)=0.
The Fourier transform of the Gaussian -correlator
s(r, ,z;t)s(0,z';0)) at the Dirichlet fixed point follows
om (7) as

-1

Pni(2) =g (29)

g
1+ ZCI)OZ

IV. RENORMALIZATION GROUP ANALYSIS
A. Surface divergencies

In the next subsection the density profile will be calcu-
lated by an expansion around the mean field praf2é).
Since the perturbative calculation of Green functions leads t
integrals that are ultraviolet divergent in the upper critical
dimension d,=2, we have to employ a regularization
method to obtain a well-defined perturbation series. We uti-
lize the method of dimensional regularization that allows us
to render all integrals finite up to poles &=2—d. The e
poles are then absorbed into renormalizations of coupling
coefficients and fieldgminimal renormalization It was

shown in Ref[11] that for the bulk system a renormalization Using the differential equatiof25) for the propagator and

of the coupling coefficientp ando is sufficient to cancel all  the Dirichlet boundary conditions this may be written in the
uv divergencies. form

In general the breaking of translational invariance by a
boundary generates additional divergencies that require ad-
ditional renormalizations of surface couplings and fields.
(For a review see Refl].) To determine the surface diver-
gencies we first consider the flat profilg(z) =0, which is a

éqL W(z.2)=2) Jl) dyéqL w(Z)Y)

X(02 +0dydy)G_q —u(Z'y). (29

éqL 'w(Z,Z')=W[éqi ,w(zvz,)—i_éfqL ,*w(zlvz)]

steady state of the system provided thé@,=0 and
C(2) =Cypy for all z>0 [see Eq(22)]. [At the stable fixed
point with w=o/p=1 thez independence of(z) follows
immediately from the the Hamiltonia10).] It will be

+2(1-w)rg? fo dyGq, o(z.Y)

XG_q, —u(Z'Y), (30)

shown below that this condition is generally satisfied forwherew=a/p. For the calculation of density fluctuations it
d=1 and in the high-temperature, strong-field limit in higheris useful to transform the correlator intg,(,z,t) represen-

dimensions.

tation. The result reads
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Cq,(2,2';)=WGq (2.Z;|th +(1-w)\q? Cq, w(2,0)=C" [0, C (2,2')] =0
P _ _ A (D) , -2
Xf Gy (2231, 31) 2(W—=Wg)d, Gy ,(2,2")|1=0] +O(c™?)
where (with wg="c/c). Therefore the leading order terms in an ex-
) (z—2')? pansion in powers of ! can be studied in the framework of
Gq, (2,2/;t) =0 (t)(4mhpt) Ve 0! ex;{ - ﬂ) a field theory with Dirichlet boundary conditions by the re-
p placements
(z+2')? - o~
_ =7 S¢—C ™ ~pdyS, 37
exp( ot (32) s pon (37a
Se—C p[ds—2(W—Wqg) 9,3 | (37b)

is the free progagator.

Forw=1 Eq.(31) reflects the detailed balance symmetry i expectation values. To investigate the scaling behavior of
(12). Integrating the correlatof31) over q, we obtain for  Green functions with insertions &f ands we have to com-
t=0,z>0 pute the uv singularities generated by the surface fields on

the right-hand side of37). These singularities require renor-

C(2) = Cpype= — (1= W) (d—DI'(ai2) (2p) 4. (33 malizations of the form

d/i2
2p(am) pns=211pdrS . (383
It is thus necessary for the flat profile to be stationary in _ _
dimensionsd>1 that the conditionw=1 is satisfied. Devia- p(9nS—2W3,S) =21 p(dns—2WdyS) I, (38b)
tions from this stable fixed point generate the long-range -
correlations[9] in the bulk that are responsible for tie Zw=7 g (380

dependence of the functio@(z). In this sensewW—1) is -

dangerously irrelevant. There is, however, a microscopic reThe renormalization factorZ, and Z, are determined by

alization of DDS in which equal-time correlations are absenfequiring that the averages

in spite of the violation of(microscopig detailed balance ~

[27]: In the high-temperature, strong-field limit the particles ([pdns Jrs(z>0))

are noninteracting except for the excluded volume constraing,q4

and cannot jump against the direction of the driving field.

The lack of correlations in this limit can be incorporated into ([p(dns—2W3d,S)]rS(2>0))

the field-theoretic description by settimg=1 from the out- _

set. Ford=1 we can rendew=1 by a simple rescaling of be finite fore=0. Due to causality the termp@vd,s gives no

coupling coefficients and fields. contribution to the second expectation value but in the Green
We now proceed along the lines taken in the analysis ofunction(p(dns—2wd,s)-s(z>0)) it is necessary to obtain

the surface critical behavior of equilibrium systems at thea surface field that can be multiplicatively renormalized by

ordinary transitiorf1,2,2§. Since the correlataf31) and the  Z;.

propagator(32) vanish forz’=0 or z=0, Green functions The renormalizations that are necessary to cancel all uv

with insertions of the surface fieldg ands, tend to zero for ~ divergencies in the translationally invariant bulk theory are

c—o. A convenient method to investigate the scaling be-given by[11]

havior of quantities that vanish far= is the 1€ expansion

[2.28]. p—>Z)=pr c—0=2,0 (39
For largec the propagator of the surface fiédg behaves with
as
- N u
Gq, w(2,0)=C""pd, G (2,2')]10+O(c™?) (34) Z,=1- g-(3+w)+0(u?), (409

for z>0. In order to derive an analogous relation for u
the correlator we have to take into account the surface cou- Z,=1— —[3(w+w ) +2]+0(u?), (40b)
pling c in 7;, which has the samg dimension as. By 16e
differentiating the equation of motiofl9) and (200 with

] where
respect tal one obtains

2y 32 €
Pé’z’cqL ’w(Z,Z’)|Z/=O=20'&ZquL ,w(ZaZ,)|z’=0 Aglp He (400
- A In Eqg. (400, u is an external momentum scale and
+¢Cq, ,w(2,0)=2CGq, 4(2,0) A.=T(1—€l2)/[(1+ €)(47)%?] is a geometrical factor that
(35) has been introduced for convenience. The renormalization
factorsZ, andZ, are calculated at one-loop order in Appen-

and, forc— o, dix A with result
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s = Y = am p®1(2)+1g[C(2) — Coppt 20 (2P4(2)]=0 (43

has the solution

FIG. 1. Perturbative contributions 10, ;. g (7 gz

®4(2)=— 2—f dZ’eXrJ( - —f <I>mf(y)dy) [C(z")— Cpunl
pJo pJz

~ w—1u
21=1+T;+O(u2) Z;=1+0(u?. (41 )

[C(Z") = Cpund, (44)

!

g Zdz’ z +
z+a

We now show that at the stable fixed point=1 the 2pJo
theory is free of surface singularities, i.&;=2;=1. The
idea for the proof is presented graphically in Fig. 1. The
hatched circle represents the sum of all connected Feynm
graphs with a single externalleg and twos legs. Together
with the threzze-point vertex representing the bulk coupling
(Ng/2)(9ys)s? it gives the sum of all perturbative contribu- . .~ . .
tions to 'yhe(amputateﬁi Green functionG, ;. Lines with or :gg)dlststom tiind\;?llgﬁézzuﬁgt(ij 0?1 ;llluctuatmg paw(r), which
without an arrow denote Dirichlet propagators or correlators
while a short line perpendicular to a propagator-correlator  r - 1 TI D b T %
line indicates a derivative with respectzoBy naive power ol &P+ ¢] /OM’CD]+’/G[¢’¢'(I)]+‘7'm[¢'¢](;15)
counting one expects that the integrations associated with the
first Feynman graph diverge as;. Since the breaking of where
translational invariance reduces the degree of divergency by
unity [1] the graph should give rise to logarithmic surface PO d ~ ) 1 2
divergencies. However, Fig. 1 shows that the graph may be "]°[¢'®]_f dtﬁ,d AP’ (2)+29P(2)7],
replaced by a different diagram with only logarithmic bulk (46)
singularities(and thus without surface divergendies

The first equality in Fig. 1 is justified if we assume that _ ~ A ~
the time variable carried by the leftmost vertex is smaller jG[‘f"qb;CD]:J dtJVd H{pdip+N(dL¢)(1 )
than the time variables associated with the vertices in the

where a=2p/(gdy). At one-loop order it is sufficient to
calculate the density fluctuatidd(z) in a Gaussian approxi-

ation. Since this function depends on the density profile we
have to generalize the results of the previous subsection to
the cased(z)#0. For this purpose we split the fiek(r)

bubble. In this case we can replace the first correlator by a + () (3)d) + gD (2)(9)B) p— (3, b)?
propagatofEq. (12)]. In fact, if we assume that anternal ~ s
vertex carries the earliest time argument the graph vanishes —p(9H)°1}, (47)

due to the Dirichlet boundary conditiorisee Fig. 2. The
second equality in Fig. 1 follows from integration by parts &"
with respect to the variable of the first vertex:

d

~ 1 ~
B . 1 1 %nt[¢,¢]=J dtfvddrzkg((9|\¢)¢2- (48)
f dzs“'s‘ﬂ{s'=f dzsiaz(g 2)=— EJ d7s2a,s,
0 0 0 (Throughout this subsection we assume1, i.e.,c=p.)

where we have used the Dirichlet boundary conditions. Sincél-he Gaussian propagator satisfies the differential equations
the z derivative now acts on an external line the degree of R 1

divergency is reduced by unity. The remaining Iogarithmic[Kz—pag—gach(z)]qu W(2,2)= Xa(z—z’), (499
bulk divergency is canceled by the renormalizatiorpof

R 1
B. Density profile at one-loop order [Kz—pa§+ g(I)(z)o"Z]qu W(Z'2)= X 8z—-17'), (49b)
In order to compute the lowest order correction to the
mean field profile we insert the ansatz which follow from the functionalZg (47). The solution for
®(2)=®+(z) may be written in the form
O (2)=Pmi(2) +P1(2) (42)
, . , . - 1 11f.(4o)
into Eq. (22) and retain only the terms linear #,(z). The Gq, w(z,2)= 2|7 f_(Z2)
resulting differential equation 2\ \/;K ¢Lt-(Lo)
_f+(§<) f—(§>)- (50)
where
FIG. 2. The vertex is assumed to carry the earliest time argu- fo()=(1Fexp =¢) (51

ment. In this case the integration owevanishes due to the Dirich-
let boundary conditions. and
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=«r(z+a)\p, {o=ral\p, (529 L(1-e/2) gu™p "2 2(uzl Jp)*
(I)l(Z): ar > _F(Z;a,f)
, (4) (z+a) e(1+e)
= k(maxXz,z'}+a)/p, (52b) 61)
= K(min{z,z’}+a)/\/;. (520  with
To obtain the correlator one has to calculate the integral 12+e

F(zae (,U,/\/_)JdZTa)z

qu'w(z,z')zzxfo dqui,w(z,y) L ) ) yoe

-y
X 1+e/2+F(1—e)fodyy+22’/ae :

X(02 +piydy)Gq, —u(Z'y). (53

(62)
We use Egs(49) to simplify the integral by eliminating one
of the twoy derivatives in(53). The result In the limit e—0 we have
C (z,2')= (z/,2)+G (z,2')—\g wdycb a 2z
ql ® qL,—w g q, ,\% 0 mf F(z;a,e=0)=z 1+m —al y+In =
X(Y)[Gq, o(2Y)Cq, ~u(Z W] (54 z-a (22| (22
T U ———exp —|E| —]], (63
A . . . z+a a a
can be further simplified by integration by parts since
wherey=0.5772, ... is Euler's constant and(k) denotes

Ga, ~(Z )0y Pmi(y) =Cq - 0(¥:2') 0z Pri(Z). (59 the exponential integrdl29]. Equation(60) shows that the

perturbation series is not well defined fer 0. This uv di-

This manipulation leads to vergency is canceled by the renormalization of the diffusion

Co, w(2.2 "= G 7w(2'12)+é (2.2') constantp in the mean field profile which leads to
(z)- 2L + “Luzlp)-1]
(Z +a)2J dqu o)(z Y)G 7w(y z ) N g z+a 2(Z+a) K

(56)

—(1+e€)F(z;a,e) | |[+O( 2-loop). (64

The functionC(z) describing the Gaussian density fluctua-

tions is given by the integral &€, ,(z,z) overq, andw.  Since the coupling constagtis relevant below two dimen-
Using the semigroup property sions we may not use the perturbation series at finite order
directly to study the asymptotic behavior of the profile. In the
. [ ] . following subsection we improve the one-loop result Eg.
Gq, (227111 1p) = fo dy Gy, (zyit1)Gq, (¥,2"12) (57) (64) by a renormalization group analysis.

of the propagator ind, ,z,t) representation we obtain C. Scaling

P ~ The renormalization group transformation allows us to
C(2)=Cpui— mj qu w=0(2,2), (58 map the profile for large values af (compared to micro-

A scopic length scalg¢go length scales which are accessible to
perturbative calculations. Since the bare coupling coeffi-
cients are independent of the momentum sgaléne profile
satisfies(for w=1) the renormalization group equation

[ud,+B(U)dy+{(u)(pd,+ady) ]®(zu,p,a;u)=0,

where

Chouk=2 f R{Gy o(22)]=AI A (59
q .

65
is independent af>0. The straightforward evaluation of the €9
g, integral in(58) yields where[11]

[(1-€l2) 2pt7 9% [(z+a)? z? 1 d 1
CO=Coun=" "G raf ¥ ¢ 1ren L= ng, | p==Fur0d) (66)

a y~ €
_ -y d
F(l—e)fo WYitayiz® | 0 an
d

To compute the one-loop correction to the profile one has to BW=p—| u=u[—e—27(u)] (67)
insert(60) into Eq. (44), giving du |o
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are defined as derivatives at fixed bare parameters. Equation
(65) can be solved by the method of characteristics, with the

solution
®(z;u,p,a;u) =P (Z;u(l),pX(1),aX(l);ul) (68
and associated characteristics
d__ - _
IJU(I)=B(U(I)), lalnX(l)=§(U(l))- (69

Using dimensional analysis and E@®8) it is easy to show
that the profile satisfies the relation

®(z;u,p,a;u)

=(uh)¥pX()]~ M
X (ulz[ pX (]~ YZu(l), Lula[X(1)/p]¥31).
(70
For smalll the scale dependent coupling coefficiar()

tends to the fixed point, = (4/3)e+ O(€?) and the function
X(1) is asymptotically proportional to a power bf namely,

1 2—d

X=X 727, p==ZLu)=—75=, (7D

where X, is a nonuniversal scale factor. By choosing the
value
I=[(Xop) " (n2)]¥>~9 (72)

for the flow parameter we obtain fas \/;,u‘l the scaling
form

D (z,P0) = D= (BPZ P57 D) (73
with the scaling function
E(x)=x"'®(1;u,,Lax"}1) (74

[wherea=(4A_/u,)?] and the nonuniversal constant

B:[(pxo)uz’uels]—3(d—1)/[2(5—d)]_ (75)
To derive Eq.(73) we have used the identity
Aegzzu*(pr)s/z e, (76)

which follows from the flow equation§9) and the initial
condition(40¢ to express in terms of®g, p, u,, Xy, and
. Note that ford=1 there is no adjustable parameter in Eq.
(73) sinceB is unity in this case. The scaling behavior of the
one-dimensional profile was first predicted by Kiug].

The reciprocal of the scaling function at first ordereiis
given by

X 2
B(x) =1+ = 1+§F(1;a/x,e=0) Lo(d).  (77)

RENORMALIZED FIELD THEORY AND PARTICLE ...
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FIG. 3. Solid curve: scaling functiofE ¢,,(X) ! calculated
from the exact profile; broken curve: first order én dotted line:
asymptotic behavior 0F g,,(X) 1 for x—.

E exact X) = exp(x?) erfo(x), (78
where erfck) = (2/\/7) [7dy exp(~y?) denotes the error
function [29]. The exact scaling function and the one-loop
approximation(77) for e=1 are depicted in Fig. 3. The as-
ymptotic form

B exact X) = \mx  for x—w» (79
of the scaling function can be compared with the asymptotic
behavior

2(x) 1= %[1+ 2e+0(€d)]x~1.086/7x  (80)

of the e expansion at first order far=1. Here and in Fig. 3
we have used the geometric prefacte (4A_/u,)'? di-
rectly for e=1 (i.e., without expansion i) since this pro-
cedure is empirically known to give the best numerical re-
sults[11].

By a different choice of the flow parameter it is possible
to eliminate theD(€) contribution to the profile completely.
The corresponding value bfis defined by the equatidsee
(64) and (70)]

Wzl pX ()] Yan{ulz[pX(1)] "2
—F(ulz[ pX(1)]~¥2 pla[ X(1)/p]*2 €= 0)=0.
(81)

However, this modification has only a small effect on the
scaling functionZ (x) ~* at one-loop order.

We conclude this section with the discussion of log-
arithmic corrections to the mean field profile in two dimen-
sions. Fore=0, w=1 the scale dependent coupling coeffi-

cientu(l) is the solution of the differential equation

d__ — 3__ —
|7 u(h=pLulh 1= Zuh?+0[u(® (82

with the initial conditionu(1)=u. For |—0 we find the
asymptotic expression

In order to compare this result with the exact solution found

in Refs.[14,15 we have to take the continuum limit of the
exact profile. In Appendix B we show that this limit leads to

In In(11)

In(1) ” (83)

4
u(I)=§[In(1/I)]_1{1+O(
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A straightforward calculation yields the asymptotic behavior
of the characteristiX(l), §; @; o W
§ z \ z

InX(I)=f1IC:—|,§(u_(I’))z§In In(1/1)+ const (84) (@ ®)

FIG. 4. Perturbative contributions to tk& surface-bulk and the
for 1—0, i.e., X(1)~[In(11)]?". In order to sum the loga- (b) bulk-surface response function. Here the hatched circle repre-
rithmic singularities in the perturbation series we Setsents the integral kern€hs).
| = p/(uz) in Eq. (68) and obtain

long-range correlations in the bulk give rise to an inhomoge-
D (2, 0)=Do[1+constx Dyz(In(uz/\p)) 231 neous steady state even fdro=®,,,. [It was already
(85  pointed out by Zia and Schmittmanit9] that the coupling
coefficient (1-w) that is responsible for the long-range cor-
relations is dangerously irrelevant fordd<2.] This effect
should lead to a modification of the maximum current prin-
ciple [Eq. (1)]. Finally, it would be interesting to study the
This result is valid on length scales that are large comparetbrmation of the stationary density profile starting from a
to microscopic distances, i.e>Aj . homogeneous initial state.

N (|n2)2/3

for z—oo, (86)
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system by a reservoir the effects of boundaries are of great
interest. Using a field theoretic renormalization group ap- APPENDIX A: SURFACE SINGULARITIES
proach we have calculated the density profile in a semi- AT ONE-LOOP ORDER
infinite DDS with a particle reservoir at the boundary. For
d=1 our result is in fair agreement with the exact solution
for the totally asymmetric exclusion moddl4,15. Equation
(85) for the two-dimensional profile is a result that may be
checked by computer simulations.

We plan to extend the present work along several lines:

(1) We have studied the effect of a particle soufoe ) — . =
sink) at z=0 assuming a second reservoir to be located at Xsl1 ZD=(S(r,,Z)pdnS(0.0)) (A1)
z=L with L—oc. One would also like to consider the inter- gnd the bulk-surface response function
play of the reservoirs for finité [14,15.

(2) In a system with quenched disorder and periodic Xos(r 1 ,Z;t)={(pd,s(r, ,t)5(0,z,0)) (A2)
boundary conditions a patrticle is subjected to the same ran- _ )
dom potential after every passage through the system. In thi@ay be written in the form
way the periodicity produces long-range correlations that . - ,
make it difficult to compare simulational results with theo- Xsp(QL,@,2)=pdyGq (2,2 Nzr=o
retical predictions that assume uncorrelated disoriigl To . .
circumvent this problem it would be desirable to consider +J dyf derqL’w(%yf)pyyéqL,w(z7y)
disordered DDS with open boundary conditions. 0 0

(3) In the case of noncritical DDS the scaling behavior A o,

(73) of the profile can be described by a single exponent, XpdzGq, u(¥'12)]z =0
namely, the bulk exponeny=(2—d)/3. This is due to the

fact that the surface densith, has the same scaling dimen- and

sion as the bulk density. We expect that this is no longer true .. A ,

if the system is at its critical point. In general the surface Xbs(dL@,2)=pdzGq  o(2',2)[z1=0
critical behavior is governed by new exponents that cannot " "

be expressed i_n terms of bL_JIk exponents. _ +f dyf dy/in ,w(y,rY)ayéqi w(Y,2)

(4) Another line of extension would be to consider bound- 0 0
aries parallel to the driving force. A -

(5) In Sec. IV we have shown that fa>1 the flat profile XP&Z’G% w(ZY )z =0, (A4)
®(2)=0 is only stationary in the case of detailed balance ] - )
and in the limit of high temperature and strong field. In therespectively, wher&, ,(z,z') is the free propagatd(32)
more general case of a lattice gas at finite temperature the Fourier representatio(see Fig. 4 At one-loop order the

In Sec. IV we have shown that fev=1 the perturbation
expansion is free of surface singularities. In this Appendix
we consider the general cage=0.

The Fourier transform of the surface-bulk response func-
tion

(A3)
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keme|in,w(Z,Z/) is given by the translationally invariant bulk theory as well as in the
semi-infinite model and has to be cured by a renormalization
Kq, ,w(Zrz'):()\g)ZJ [(gz,{;qfkL o (2,2)] of p. The form of this singularity follows from dimensional
kv analysis and the isotropy in the directions parallel to the
Xéki,V(Z,Z')JFO(gA)- (A5) surface. SinceK,h,w(z,z’)~)\/,L2 and z~ \/;—),ufl the (di-

mensionally regularized bulk singularity contained in

Note thatK, (2,2") has to be treated as a distribution Kq, .»(2,2") is proportional topd’(z—2'). The breaking
since the calculation of response functions involves integraef translational invariance by the boundary generates addi-

tions of Ky ,(z,2") with respect taz andz’. tional divergencies foz, z' —0 [1]. Upon dimensional regu-

Before we calculate the singular part of the kernel explic-larization they are proportional wpé(2) 6(z').
itly it is helpful to discuss the general form of the divergen- In order to compute the coefficients of the distributions
cies one has to expect. Firt, ,(z,z’) has a nonintegrable we apply the kernel to exponential test functions. At lowest

(for d=2) singularity if z—z'. This divergency occurs in Order ing we have

© o o ANQPu T (1+e2)[3+w B w-1
’ "Na—Bz—B'2 _ 0 ~4
fo dzJ’0 dz qu'a,(z,z )e 6\/; (4m)T2 8 Bip + 8 +0(€e”,g%). (AB)
The inverse Laplace transform of this expression with respegtamd 8’ is given by
« . AGPu T (1+el2) 3HW i VL s s | o0 g A7
qivw(zaz )_ 6\/5 (477)(]/2 8 (Z |Z) 8 (Z) (Z ) (E e )1 ( )
|
where we have introduced the definition - w—1u
21:1+TZ+O(“2)’ Z;=1+0(u?). (A12)
f dz' &' (Z'|2)f(2')=—1'(2). (A8)
0

The renormalization factaZ, is unity at every order of the
[This distribution is equivalent ta (' —2) if we define perturbation series since the primitive surface divergencies in

8(—2)=0 for z=0.] It is now straightforward to calculate K_‘h w(2,2) are propo.r'FlonaI t,O(S(Z,) 5(,2 )j Due to the Di- .
the singular parts of the response functions at one-loop ordefichlet boundary conditions this distribution has no effect in

Inserting(A7) into Egs.(A3) and (A4) we find Eq. (Ad).
o 2)= T u(wol 3+wez APPENDIX B: THE EXACT PROFILE
A S Y i 16 |, IN THE CONTINUUM LIMIT
One of the simplest examples of a DDS is the totally
+0O(0,u) [e= <P (A9)  asymmetric exclusion model in one dimens|@0]. For this
model with nearest neighbor hopping and open boundary

conditions the density profile has been calculated exactly by
and Schitz and Domany 14] and Derridaet al.[15].
The model is defined on a chain Nfsites each of which
U3+W kz _ is either occupied by a single particle or empty. At each time
1+ — —— —=+0(%u?) |[e <@, step one chooses a random lattice gitel<p<N. If this
€ 16 \/I; site is occupied by a particleng=1) and its right neighbor
(A10) site is empty 6,.,=0), the particle will jump fromp to
) ) ) p+1. In the model with open boundary conditions particles
To obtain renormalized response functions one has t0 &Xye injected with rater at the left boundary and leave the
press the coupling coefficientsand o by their renormalized system with rate3 at the right boundary.
counterpart§see Eq(39)] and absorb the remainingpoles For a,8=1/2 the bulk density takes the critical value
into renormalizations of surface fields, i.e., n.=1/2 and the system carries the maximum current. Since
- we wish to compare the expansion of Sec. IV with the
[Xsolr=Z1 "*Xsb, [Xbslr=2Z1"*xpbs  (Al1l)  exact profile we leN— in order to eliminate the influence
of the right boundary. Using the formulas given in the Ap-
with pendix of Ref[14] we arrive at the particle density

. 1
XbS(qL 1(1)12): x
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1 2 (2p—2)! 1 3 to show that
<”p>:§+ﬁ(p—1)!2{ " 2p2a-12F | 12 P
4a(l—a) . 3. . = N 2\-3/
——(2a_1)2> (B1) p!:lw':[l,z,pﬂ, ({a—1)] Joe (1+7/x?) "3,
(B4)

for «,=1/2 andN—, whereF(a,b;c;z) is a hypergeo-
metric function[29].
To compute the scaling functioB .,..(x) from the mi-  For largep the prefactor in Eq(B1) is given by
croscopic profile one has to take an appropriate continuum
limit. In addition to the distance from the boundary the in-
jection ratea provides the only macroscopic length scale 2 (2p—2)!
£,=(2a—1)"? in the model. We therefore measupein 4P (p—1)1%2 2\/77—[1+O(1/p)]- (BS)
units of £, and letp,é,— at fixed x>=p/&,. For this P
purpose it is convenient to use the integral representation

3. _ A straightforward calculation now yields in the continuum
Fllzip+1i=(&— )] limit defined above

=pfl(l—t>p—1[1+<§a—1>t]—3’2dt (B2)
0 (0p)=ooexp agp) erfd aoyp), (B6)

= fpexq(p— DIn(1—#/p)[1+(&,—1)7/p] ¥dr

0 where we have expressed the occupation numbers in terms of
(B3)  the spin variablegr,=2n,— 1, 0p=2a—1.
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