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We investigate the density profile in a driven diffusive system caused by a plane particle source perpen-
dicular to the driving force. Focusing on the case of critical bulk densityc̄ we use a field theoretic renormal-
ization group approach to calculate the densityc(z) as a function of the distance from the particle source at
first order ine522d (d denotes the spatial dimension!. Ford51 we find reasonable agreement with the exact
solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field
profile are computed ford52 with the resultc(z)2 c̄;z21@ ln(z)#2/3 for z→`. @S1063-651X~96!03105-4#

PACS number~s!: 05.40.1j, 05.70.Fh, 64.60.Ak, 66.30.Dn

I. INTRODUCTION

It is well known that in thermodynamic systems with
longe-range correlations boundaries have a considerable in-
fluence on physical quantities even at macroscopic distances
from the surface. During recent decades this effect has been
investigated extensively in the context of surface critical
phenomena~a review is given in Ref.@1#!. It has been shown
that the critical behavior near a boundary is governed by
universal scaling laws with new critical exponents that can-
not be expressed in terms of bulk exponents. The renormal-
ization group has proved to be a useful method for the clas-
sification of both static@1–5# and dynamic@6–8# surface
universality classes.

While in equilibrium systems long-range correlations oc-
cur if the thermodynamic parameters approach a critical
point, they seem to be the rule in nonequilibrium systems
with conserved dynamics@9,10#. In this paper we study the
diffusion of particles subject to a driving force in a system
with open boundaries. Here the particle conservation in con-
junction with the deviation from detailed balance leads to
long-range correlations and anomalous long-time behavior
@11# even at temperaturesT@Tc above the critical point~for
a review see@10#!. Especially interesting from a physical
viewpoint are surfaces that act as particle reservoirs and thus
break the conservation law. In the case of boundaries perpen-
dicular to the driving force that we consider in the present
paper a particle reservoir is necessary to maintain a nonvan-
ishing steady current.

A simple microscopic realization of a driven diffusive
system~DDS! is a lattice gas@12# with hard core repulsion
and nearest neighbor hopping. In a homogeneous state of
density~particles per lattice site! c the external field~favor-
ing jumps in the positivez direction! produces a steady par-
ticle currentj (c). Due to the excluded volume constraint the
current vanishes if every site is occupied by a particle, i.e.,
j (1)50, while j (c);c for c!1. In a work by Krug@13# on
boundary-induced phase transitions the general form of the
density profile has been discussed. It has been shown that the
bulk densityc̄ satisfies the following maximum current prin-
ciple: If the boundary atz50 is in contact with a particle
reservoir of densityc(0) and every particle that reaches the

boundary atz5L leaves the system, i.e.,c(L)50, then the
current is maximized in the sense that

j ~ c̄!5max$ j ~c!u0<c<c~0!% ~1!

for L→`. As a direct consequence of this principle the bulk
density is at the maximum pointc! of the functionj (c) and
the profile decays only algebraically from boundary to bulk
value if c(0)>c!>c(L).

Recently the exact density profile in one dimension has
been calculated for arbitrary boundary conditions
0<c(0),c(L)<1 @14,15#. These works confirm and gener-
alize a large part of the results obtained in Ref.@13#.

Until now no exact solutions have been found for more
complicated problems such as driven diffusion in higher di-
mensional systems, at a critical point@16#, or in a medium
with quenched disorder@17#. In these cases the field theoretic
approach is useful in obtaining systematic approximations
for density profiles or correlation and response functions. In
the present paper we use the exact solution of the one-
dimensional asymmetric exclusion model found in@14,15# to
test the accuracy of the renormalization-group improved per-
turbation theory. We also extend the analysis to two-
dimensional DDS.

In the next section we present the semi-infinite extension
of the continuum model for DDS introduced in Ref.@11#. In
Sec. III the boundary conditions are discussed and the den-
sity profile is calculated in a mean field approximation. Hav-
ing introduced the renormalization factors that are required
to obtain a well-defined renormalized field theory in Sec. IV
we calculate the Gaussian fluctuations around the mean field
profile. We use the renormalization group to compute the
universal scaling function for the profile at first order in
e522d and compare our result with the exact one-
dimensional profile. Ford52 we obtain the logarithmic cor-
rections to the mean field solution. Section V contains a dis-
cussion of our findings and an outlook. In Appendix A some
technical details of the calculation of the surface divergen-
cies at one-loop order are given. In order to compare our
perturbative result with the exact solution we have to take
the continuum limit of the exact profile. This is done in Ap-
pendix B.
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II. THE MODEL

Some time ago, van Beijeren, Kutner, and Spohn@18#
introduced a continuum model for the diffusion of particles
subject to a driving force. The anomalous long time behavior
of this DDS was studied by Schmittmann and one of us@11#
by renormalization group methods. The equation of motion
for the particle densityc(r ,t) in this model is given by the
continuity equation

]

]t
c~r ,t !1¹ j ~r ,t !50. ~2!

Here the currentj (r ,t) consists of a diffusive part, a contri-
bution caused by the driving forceE, and a partjR(r ,t),
which is assumed to summarize the effects of the fast micro-
scopic degrees of freedom:

j ~r ,t !52D¹c~r ,t !1k„c~r ,t !…E1 jR~r ,t !. ~3!

This form of the current can—in principle—be derived from
the microscopic dynamics by a suitable coarse graining.
Since the external fieldE introduces an anisotropy into the
system the coarse graining in general gives rise to an aniso-
tropic matrix of diffusion constantsD.

Expanding the conductivityk(c) in the deviation
s5c2 c̄ of the density from its uniform average~bulk! den-
sity c̄, we have

k~c!5k~ c̄!1k8~ c̄!s1 1
2k9~ c̄!s21•••. ~4!

Neglecting higher order terms in this expansion one obtains
the Langevin equation

] ts~r ,t !5l~D'1r] i
2!s~r ,t !1l] iS f s~r ,t !1

1

2
gs~r ,t !2D

1z~r ,t !, ~5!

where f}2Ek8( c̄) andg}2Ek9( c̄), and the indicesi and
' distinguish spatial directions parallel~‘‘longitudinal’’ ! and
perpendicular ~‘‘transverse’’! to the driving force. The
Langevin forcez52“jR is assumed to be Gaussian with
zero mean and the correlations~after a suitable rescaling of
s)

^z~r ,t !z~r 8,t8!&522l~D'1s] i
2!d~r2r 8!d~ t2t8!.

~6!

It was shown in@11# that the model defined by Eqs.~5! and
~6! is complete in the renormalization group sense; i.e., fur-
ther contributions to~5! and~6! as well as non-Gaussian and
non-Markovian parts of the Langevin forces are irrelevant
for the long-time and large-distance properties of the system
as long as the diffusion constants are positive.

For an infinite system the term proportional to the cou-
pling constantf in the Langevin equation~5! can be elimi-
nated by a suitable Galilean transformation@11#. Such a Gal-
ilean transformation can of course not be applied to a system
with time independent surfaces perpendicular to the driving
force. However, Krug has shown@13# that in a system with
open boundaries in which the particles are driven from a
reservoir of densityc1 to a second reservoir of densityc2

with c1.c!.c2 the particle density far in the bulk takes the
value c!, which maximizes the functionk(c). In this case
we havef}2k8(c!)50 andg}2k9(c!).0, and the den-
sity decreases only algebraically from the boundary value to
the bulk value. Since we are interested in the behavior of the
system near one of the boundaries we may effectively con-
sider a semi-infinite system with bulk densityc̄5c!, i.e.,
f50.
Appropriate boundary conditions for diffusive semi-

infinite systems have been derived in@7,8#. This approach
crucially rests on the assumption of detailed balance. In Ref.
@11# it was shown that the dynamics defined by the bulk
stochastic equations of motion~5,6! with f50 satisfies this
assumption ifw5s/r51. Under renormalization group
transformations the coupling constantw flows to the detailed
balance valuew!51 if d<2. Ford.2 the system displays
mean-field-like behavior. It should be remarked that forwÞ1
the correlations are long ranged@19#. Thus ford<2 the vari-
able (w21) plays the role of a dangerously irrelevant cou-
pling and its effects have to be studied.

To set up a renormalized field theory it is convenient to
recast the bulk model in terms of the dynamic functional
@20–25,11#

J b@ s̃,s#5E dtE
V
ddr H s̃] ts1lF ~¹'s̃ !~¹'s!1r~] is̃ !~] is!

1 f ~] is̃ !s1
1

2
g~] is̃ !s22~¹'s̃ !22s~] is̃ !2G J ,

~7!

where s̃ is a Martin-Siggia-Rose response field@26#. The
range of integration with respect tor is the d-dimensional
half spaceV5$r5(r' ,z)ur'PRd21,z>0%. Correlation and
response functions in the bulk can now be expressed as func-
tional averages with weight exp(2J b). Forw5s/r51 the
functionalJ b can be written in the detailed balance form
@24,25#

J b@ s̃,s#5E dtE
V
ddr H s̃ F] ts1RbS dH

ds
2 s̃D G J , ~8!

with the reaction kernel

Rb5lF ~¹Q '¹'1r]Q i] i!1
g

3
~]Q is2s] i!G . ~9!

Here¹Q and]Q act to the left, while¹ and] act as usual to the
right. The Hamiltonian

H@s#5E
V
ddr

1

2
s~r !2 ~10!

defines the purely Gaussian stationary state distribution. Ob-
viously, J b now obeys the detailed balance symmetry
@24,25#
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s~ t !→2s~2t !,

s̃ ~ t !→ s̃ ~2t !2
dH

ds
U

2t

5 s̃ ~2t !2s~2t !. ~11!

The last equation implies in particular that

^s~r ,t !s̃ ~r 8,t8!&5Q~ t2t8!^s~r ,t !s~r 8,t8!&. ~12!

We now turn to the surface contributionsJ 1 in the full
dynamic functionalJ5J b1J 1 arising from the boundary
layer atz50. Locality is assumed for the bulk and the sur-
face. Therefore J 1 should be written as a
(d21)-dimensional integral over surface fields alone. It is

easily seen that for the HamiltonianH only irrelevant sur-
face terms can be constructed. ThusH has the form~10!
also in the semi-infinite case. To retain the detailed balance
form ~9! of J we can only modify the reaction kernel~9!
Rb→R5Rb1R1 . Such a modification has to describe the
breakdown of particle conservation due to the reservoir@8#.
The relevant contributions that respect the symmetry~11! are

R15l@ c̃1b~s22s̃ !#d~z! ~13!

up to redundant terms. Since the kernelR has to be positive
for reasons of stability it follows thatc̃.0. This completes
our construction of the dynamic functional in the case of
detailed balance. We eventually get

J @ s̃,s#5E dtE ddr H s̃ F] ts1RS dH

ds
2 s̃D G J 5E dtE

V
ddr $s̃] ts1l@~¹'s̃ !~¹'s!1r~] is̃ !~] is!#1 1

2 lg~] is̃ !s2

2l@~¹'s̃ !21r~] is̃ !2#%1E dtE
]V
dd21r'l@ c̃ s̃~s2 s̃ !1bs̃~s2 s̃ !~s22s̃ !2 1

6gs̃s
2#. ~14!

We now consider the modifications that we expect if detailed
balance does not hold. First of all, the bulk functional is
given by ~7! with a noise constants independent of the
diffusion constantr. In addition, the different surface fields
that show up in~14! are now independent, and a boundary
source has to be added to the equation of motion~5! leading
to a term linear ins̃1 . We thus get for the surface dynamic
functional

J 1@ s̃,s#5E dtE
]V
dd21r'lS cs̃s2 c̃ s̃ 22h̃1s̃1

1

2
gas̃s

2

2
1

2
gbs̃

2s1
1

6
gcs̃

3D . ~15!

In Eqs.~14! and ~15! we have omitted the surface operators
s]ns̃, s̃]ns, s̃]ns̃, ]ns̃, and ]n

2s̃ ~where ]n5] i means the
normal derivative! since they can be expressed in terms of
the composite fields retained inJ 1 ~see also below!.

We remark that we have always used the prepoint time
discretization in the construction of the dynamic functional
@24,25#. This corresponds to the definitionQ(t50)50 and
thus allows us to omit all~measure! terms}Q(0) in J .

III. EQUATIONS OF MOTION AND MEAN FIELD
PROFILE

Introducing the functional

Z@ J̃,J; J̃1 ,J1#5E D@ s̃,s#exp@2J b@ s̃,s#2J 1@ s̃s ,ss#

1~ J̃,s̃ !1~J,s!1~ J̃1 ,s̃s!1~J1 ,ss!# ~16!

we may write correlation and response functions as deriva-
tives of Z with respect to the bulk sourcesJ̃, J and the

surface sourcesJ̃1 , J1 . In Eq. ~16!, s̃s and ss denote the
surface fields and we have used the abbreviations

~ J̃,s̃ !5E dtE
V
ddrJ̃s̃ ~17!

and

~J1 ,ss!5E dtE
]V
dd21r'J1ss . ~18!

To obtain the boundary conditions that are determined by the
surface functionalJ 1 we exploit the invariance ofZ with
respect to a shift of the fieldss̃ and s. This invariance im-
plies the equations of motion

^dJA&$ J̃ ,J; J̃1 ,J1%
5JA for A5 s̃, s, s̃s , ss , ~19!

with the notationJs5J, J s̃5 J̃, Jss5J1 , and J s̃s5 J̃1 , re-
spectively, and

dJ s̃5] ts2l@~D'1r] i
2!s1 f ] is1 1

2g] is
2

22~D'1s] i
2!s̃ #, ~20a!

dJ s52] ts̃2l@~D'1r] i
2!s̃2 f ] is̃2g~] is̃ !s#,

~20b!

dJ s̃s
5l@2r]ns12s]ns̃1~c2 f !ss22c̃ s̃s1

1
2 ~ga2g!ss

2

2gbs̃sss1
1
2gcs̃ s

22h̃1#, ~20c!

dJ ss
5l~2r]ns̃1cs̃s1gas̃sss2

1
2gbs̃ s

2!. ~20d!

Equations~19!, ~20c!, and~20d! show that]ns̃ and]ns can
be expressed in terms of the surface operators included in
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J b . The redundance ofs̃s]ns, ss]ns̃, and s̃s]ns̃ follows by
differentiating ^]ns̃& and ^]ns& with respect toJ̃1 and J1 ,
respectively.

SettingJ̃5J5 J̃15J150 in ~19! we obtain from~20a! the
equation

]z@r]zF~z!1 fF~z!1 1
2g^s~r' ,z;t !2&#50 ~21!

for the steady density profileF(z)5^s(r' ,z;t)&. Using the
boundary conditionFbulk50, which follows from our defi-
nition of s, an integration with respect toz yields

rF8~z!1 fF~z!1 1
2g@C~z!2Cbulk1F~z!2#50, ~22!

where the functionC(z)5^@s(r' ,z;t)2F(z)#2& ~with the
bulk valueCbulk) describes density fluctuations. The bound-
ary condition atz50 follows from ~20c! and ~22! as

cF01
1
2ga@C~0!1F0

2#2 1
2gCbulk5h̃1 . ~23!

Note that equal time expectation values such as
^s(t)ns̃(t)m& with m.0 are zero as a consequence of our
prepoint time discretization. The functionC(z) contains an
ultraviolet divergence proportional tod(0)5L'

d21L i ~where
L' andL i are cutoff wave numbers!, which cancels in Eq.
~22! for z.0.

The mean field profile is the solution of Eq.~22! for van-
ishing fluctuations, i.e.,C(z)50. In the casef50, which
describes the maximum current phase, we obtain

Fmf~z!5F0S 11
g

2r
F0zD 21

. ~24!

IV. RENORMALIZATION GROUP ANALYSIS

A. Surface divergencies

In the next subsection the density profile will be calcu-
lated by an expansion around the mean field profile~24!.
Since the perturbative calculation of Green functions leads to
integrals that are ultraviolet divergent in the upper critical
dimension dc52, we have to employ a regularization
method to obtain a well-defined perturbation series. We uti-
lize the method of dimensional regularization that allows us
to render all integrals finite up to poles ine522d. The e
poles are then absorbed into renormalizations of coupling
coefficients and fields~minimal renormalization!. It was
shown in Ref.@11# that for the bulk system a renormalization
of the coupling coefficientsr ands is sufficient to cancel all
uv divergencies.

In general the breaking of translational invariance by a
boundary generates additional divergencies that require ad-
ditional renormalizations of surface couplings and fields.
~For a review see Ref.@1#.! To determine the surface diver-
gencies we first consider the flat profileF(z)50, which is a
steady state of the system provided thatF050 and
C(z)5Cbulk for all z.0 @see Eq.~22!#. @At the stable fixed
point with w5s/r51 thez independence ofC(z) follows
immediately from the the Hamiltonian~10!.# It will be
shown below that this condition is generally satisfied for
d51 and in the high-temperature, strong-field limit in higher
dimensions.

The Fourier transformĜq' ,v(z,z8) of the free~Gaussian!

propagator̂ s(r' ,z;t) s̃(0,z8;0)& is the solution of the differ-
ential equation

~ iv1lq'
22lr]z

2!Ĝq' ,v~z,z8!5d~z2z8! ~25!

with the boundary condition

r]z8Ĝq' ,v~z,z8!uz8505cĜq' ,v~z,0!. ~26!

This follows in a straightforward way from the terms bilinear
in s̃ and s of the functionalJ b ~with f50) and Eqs.~19!
and ~20d!. The solution is given by

Ĝq' ,v~z,z8!5
1

2lArk
Fe2kuz2z8u/Ar

1
k2c/Ar

k1c/Ar
e2k~z1z8!/ArG ~27!

with

k5S ivl 1q'
2 D 1/2. ~28!

The parameterc occurring in the surface functionalJ 1 and
in the propagator describes~for c.0) the suppression of
density fluctuations by the particle reservoir at the boundary
z50. Since its momentum dimension isc;Arm the asymp-
totic scaling behavior is governed by the fixed point
c!5`. This means that up to corrections to scaling the
boundary condition~26! may be replaced by the Dirichlet
boundary conditionss̃(z50)50 ands(z50)50.

The Fourier transform of the Gaussian correlator
^s(r' ,z;t)s(0,z8;0)& at the Dirichlet fixed point follows
from ~7! as

Ĉq' ,v~z,z8!52lE
0

`

dyĜq' ,v~z,y!

3~q'
21s]Q y]y!Ĝ2q' ,2v~z8,y!. ~29!

Using the differential equation~25! for the propagator and
the Dirichlet boundary conditions this may be written in the
form

Ĉq' ,v~z,z8!5w@Ĝq' ,v~z,z8!1Ĝ2q' ,2v~z8,z!#

12~12w!lq'
2 E

0

`

dyĜq' ,v~z,y!

3Ĝ2q' ,2v~z8,y!, ~30!

wherew5s/r. For the calculation of density fluctuations it
is useful to transform the correlator into (q' ,z,t) represen-
tation. The result reads
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Cq'
~z,z8;t !5wGq'

~z,z8;utu!1~12w!lq'
2

3E
utu

`

Gq'
~z,z8;t8!dt8, ~31!

where

Gq'
~z,z8;t !5Q~ t !~4plrt !21/2e2lq'

2 tFexpS 2
~z2z8!2

4lrt D
2expS 2

~z1z8!2

4lrt D G ~32!

is the free progagator.
Forw51 Eq. ~31! reflects the detailed balance symmetry

~12!. Integrating the correlator~31! over q' we obtain for
t50, z.0

C~z!2Cbulk52~12w!
~d21!G~d/2!

2Ar~4p!d/2
~z/Ar!2d. ~33!

It is thus necessary for the flat profile to be stationary in
dimensionsd.1 that the conditionw51 is satisfied. Devia-
tions from this stable fixed point generate the long-range
correlations@9# in the bulk that are responsible for thez
dependence of the functionC(z). In this sense (w21) is
dangerously irrelevant. There is, however, a microscopic re-
alization of DDS in which equal-time correlations are absent
in spite of the violation of~microscopic! detailed balance
@27#: In the high-temperature, strong-field limit the particles
are noninteracting except for the excluded volume constraint
and cannot jump against the direction of the driving field.
The lack of correlations in this limit can be incorporated into
the field-theoretic description by settingw51 from the out-
set. Ford51 we can renderw51 by a simple rescaling of
coupling coefficients and fields.

We now proceed along the lines taken in the analysis of
the surface critical behavior of equilibrium systems at the
ordinary transition@1,2,28#. Since the correlator~31! and the
propagator~32! vanish forz850 or z50, Green functions
with insertions of the surface fieldss̃s andss tend to zero for
c→`. A convenient method to investigate the scaling be-
havior of quantities that vanish forc5` is the 1/c expansion
@2,28#.

For largec the propagator of the surface fields̃s behaves
as

Ĝq' ,v~z,0!5c21r]z8Ĝq' ,v
~D ! ~z,z8!uz8501O~c22! ~34!

for z.0. In order to derive an analogous relation for
the correlator we have to take into account the surface cou-
pling c̃ in J 1 , which has the samem dimension asc. By
differentiating the equation of motion~19! and ~20c! with
respect toJ one obtains

r]z8Ĉq' ,v~z,z8!uz85052s]z8Ĝq' ,v~z,z8!uz850

1cĈq' ,v~z,0!22c̃Ĝq' ,v~z,0!

~35!

and, forc→`,

Ĉq' ,v~z,0!5c21r@]z8Ĉq' ,v
~D ! ~z,z8!uz850

22~w2ws!]z8Ĝq' ,v
~D ! ~z,z8!uz850#1O~c22!

~36!

~with ws5 c̃/c). Therefore the leading order terms in an ex-
pansion in powers ofc21 can be studied in the framework of
a field theory with Dirichlet boundary conditions by the re-
placements

s̃s→c21r]ns̃, ~37a!

ss→c21r@]ns22~w2ws!]ns̃ # ~37b!

in expectation values. To investigate the scaling behavior of
Green functions with insertions ofs̃s andss we have to com-
pute the uv singularities generated by the surface fields on
the right-hand side of~37!. These singularities require renor-
malizations of the form

r]ns̃5Z̃1
1/2@r]ns̃ #R , ~38a!

r~]ns22w]ns̃ !5Z1
1/2@r~]ns22w]ns̃ !#R , ~38b!

Z̃ 1
1/2ws5Z1

1/2wsR. ~38c!

The renormalization factorsZ̃1 and Z1 are determined by
requiring that the averages

^@r]ns̃ #Rs~z.0!&

and

^@r~]ns22w]ns̃ !#Rs̃ ~z.0!&

be finite fore50. Due to causality the term 2rw]ns̃ gives no
contribution to the second expectation value but in the Green
function ^r(]ns22w]ns̃)•s(z.0)& it is necessary to obtain
a surface field that can be multiplicatively renormalized by
Z1 .

The renormalizations that are necessary to cancel all uv
divergencies in the translationally invariant bulk theory are
given by @11#

r→ r̊5Zrr s→s̊5Zss ~39!

with

Zr512
u

8e
~31w!1O~u2!, ~40a!

Zs512
u

16e
@3~w1w21!12#1O~u2!, ~40b!

where

Aeg
2/r3/25ume. ~40c!

In Eq. ~40c!, m is an external momentum scale and
Ae5G(12e/2)/@(11e)(4p)d/2# is a geometrical factor that
has been introduced for convenience. The renormalization
factorsZ̃1 andZ1 are calculated at one-loop order in Appen-
dix A with result
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Z̃1511
w21

4

u

e
1O~u2! Z1511O~u2!. ~41!

We now show that at the stable fixed pointw51 the
theory is free of surface singularities, i.e.,Z̃15Z151. The
idea for the proof is presented graphically in Fig. 1. The
hatched circle represents the sum of all connected Feynman
graphs with a single externals̃ leg and twos legs. Together
with the three-point vertex representing the bulk coupling
(lg/2)(] is̃)s

2 it gives the sum of all perturbative contribu-
tions to the~amputated! Green functionG1,1. Lines with or
without an arrow denote Dirichlet propagators or correlators
while a short line perpendicular to a propagator-correlator
line indicates a derivative with respect toz. By naive power
counting one expects that the integrations associated with the
first Feynman graph diverge asL i . Since the breaking of
translational invariance reduces the degree of divergency by
unity @1# the graph should give rise to logarithmic surface
divergencies. However, Fig. 1 shows that the graph may be
replaced by a different diagram with only logarithmic bulk
singularities~and thus without surface divergencies!.

The first equality in Fig. 1 is justified if we assume that
the time variable carried by the leftmost vertex is smaller
than the time variables associated with the vertices in the
bubble. In this case we can replace the first correlator by a
propagator@Eq. ~12!#. In fact, if we assume that aninternal
vertex carries the earliest time argument the graph vanishes
due to the Dirichlet boundary conditions~see Fig. 2!. The
second equality in Fig. 1 follows from integration by parts
with respect to thez variable of the first vertex:

E
0

`

dzss̃]zs̃5E
0

`

dzs
1

2
]z~ s̃

2!52
1

2E0
`

dzs̃ 2]zs,

where we have used the Dirichlet boundary conditions. Since
the z derivative now acts on an external line the degree of
divergency is reduced by unity. The remaining logarithmic
bulk divergency is canceled by the renormalization ofr.

B. Density profile at one-loop order

In order to compute the lowest order correction to the
mean field profile we insert the ansatz

F~z!5Fmf~z!1F1~z! ~42!

into Eq. ~22! and retain only the terms linear inF1(z). The
resulting differential equation

rF18~z!1 1
2g@C~z!2Cbulk12Fmf~z!F1~z!#50 ~43!

has the solution

F1~z!52
g

2rE0
z

dz8expS 2
g

rEz8
z

Fmf~y!dyD @C~z8!2Cbulk#

52
g

2rE0
z

dz8S z81a

z1a D 2@C~z8!2Cbulk#, ~44!

where a52r/(gF0). At one-loop order it is sufficient to
calculate the density fluctuationC(z) in a Gaussian approxi-
mation. Since this function depends on the density profile we
have to generalize the results of the previous subsection to
the caseF(z)Þ0. For this purpose we split the fields(r )
into its mean valueF(z) and a fluctuating partf(r ), which
leads to the dynamic functional

J b@f̃,F1f#5J 0@f̃;F#1JG@f̃,f;F#1J int@f̃,f#,
~45!

where

J 0@f̃;F#5E dtE
V
ddrl~] if̃ !@rF8~z!1 1

2gF~z!2#,

~46!

JG@f̃,f;F#5E dtE
V
ddr $f̃] tf1l@~]'f̃ !~]'f!

1r~] if̃ !~] if!1gF~z!~] if̃ !f2~]'f̃ !2

2r~] if̃ !2#%, ~47!

and

J int@f̃,f#5E dtE
V
ddr

1

2
lg~] if̃ !f2. ~48!

~Throughout this subsection we assumew51, i.e., s5r.)
The Gaussian propagator satisfies the differential equations

@k22r]z
22g]zF~z!#Ĝq' ,v~z,z8!5

1

l
d~z2z8!, ~49a!

@k22r]z
21gF~z!]z#Ĝq' ,v~z8,z!5

1

l
d~z2z8!, ~49b!

which follow from the functionalJG ~47!. The solution for
F(z)5Fmf(z) may be written in the form

Ĝq' ,v~z,z8!5
1

2lArk

1

z2 F f1~z0!

f2~z0!
f2~z,!

2 f1~z,!G f2~z.!, ~50!

where

f6~z!5~17z!exp~6z! ~51!

and

FIG. 1. Perturbative contributions toG1,1.

FIG. 2. The vertex is assumed to carry the earliest time argu-
ment. In this case the integration overz vanishes due to the Dirich-
let boundary conditions.
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z5k~z1a!/Ar, z05ka/Ar, ~52a!

z.5k~max$z,z8%1a!/Ar, ~52b!

z,5k~min$z,z8%1a!/Ar. ~52c!

To obtain the correlator one has to calculate the integral

Ĉq' ,v~z,z8!52lE
0

`

dyĜq' ,v~z,y!

3~q'
21r]Q y]y!Ĝq' ,2v~z8,y!. ~53!

We use Eqs.~49! to simplify the integral by eliminating one
of the twoy derivatives in~53!. The result

Ĉq' ,v~z,z8!5Ĝq' ,2v~z8,z!1Ĝq' ,v~z,z8!2lgE
0

`

dyFmf

3~y!]y@Ĝq' ,v~z,y!Ĝq' ,2v~z8,y!# ~54!

can be further simplified by integration by parts since

Ĝq' ,2v~z8,y!]yFmf~y!5Ĝq' ,2v~y,z8!]z8Fmf~z8!. ~55!

This manipulation leads to

Ĉq' ,v~z,z8!5Ĝq' ,2v~z8,z!1Ĝq' ,v~z,z8!

2
2lr

~z81a!2
E
0

`

dyĜq' ,v~z,y!Ĝq' ,2v~y,z8!.

~56!

The functionC(z) describing the Gaussian density fluctua-
tions is given by the integral ofĈq' ,v(z,z) overq' andv.
Using the semigroup property

Gq'
~z,z8;t11t2!5E

0

`

dyGq'
~z,y;t1!Gq'

~y,z8;t2! ~57!

of the propagator in (q',z,t) representation we obtain

C~z!5Cbulk2
lr

~z1a!2
E
q'

Ĝq' ,v50~z,z!, ~58!

where

Cbulk52E
q' ,v

Re@Ĝq' ,v~z,z!#}L'
d21L i ~59!

is independent ofz.0. The straightforward evaluation of the
q' integral in ~58! yields

C~z!2Cbulk52
G~12e/2!

~4p!d/2
2r~12e!/2

~z1a!4
zeF ~z1a!2

e
2

z2

11e/2

2
az

G~12e!
E
0

`

dy
y2e

11ay/~2z!
e2yG . ~60!

To compute the one-loop correction to the profile one has to
insert ~60! into Eq. ~44!, giving

F1~z!5
G~12e/2!

~4p!d/2
gm2er21/2

~z1a!2
S z~mz/Ar!e

e~11e!
2F~z;a,e! D

~61!

with

F~z;a,e!5~m/Ar!eE
0

z

dz8
z821e

~z81a!2

3S 1

11e/2
1

2

G~12e!
E
0

`

dy
y2e

y12z8/a
e2yD .

~62!

In the limit e→0 we have

F~z;a,e50!5zS 11
a

z1aD2aFg1 lnS 2za D
2
z2a

z1a
expS 2za DE1S 2za D G , ~63!

whereg50.5772, . . . is Euler’s constant and E1(x) denotes
the exponential integral@29#. Equation~60! shows that the
perturbation series is not well defined fore50. This uv di-
vergency is canceled by the renormalization of the diffusion
constantr in the mean field profile which leads to

F~z!5
2r

g

1

z1a F11
u

2~z1a! S ze @~mz/Ar!e21#

2~11e!F~z;a,e! D G1O~ 2-loop!. ~64!

Since the coupling constantg is relevant below two dimen-
sions we may not use the perturbation series at finite order
directly to study the asymptotic behavior of the profile. In the
following subsection we improve the one-loop result Eq.
~64! by a renormalization group analysis.

C. Scaling

The renormalization group transformation allows us to
map the profile for large values ofz ~compared to micro-
scopic length scales! to length scales which are accessible to
perturbative calculations. Since the bare coupling coeffi-
cients are independent of the momentum scalem the profile
satisfies~for w51) the renormalization group equation

@m]m1b~u!]u1z~u!~r]r1a]a!#F~z;u,r,a;m!50,
~65!

where@11#

z~u!5
1

r
m

d

dm
U
0
r52

1

2
u1O~u2! ~66!

and

b~u!5m
d

dm
U
0
u5u@2e2 3

2 z~u!# ~67!
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are defined as derivatives at fixed bare parameters. Equation
~65! can be solved by the method of characteristics, with the
solution

F~z;u,r,a;m!5F„z;ū~ l !,rX~ l !,aX~ l !;m l … ~68!

and associated characteristics

l
d

dl
ū~ l !5b„ū~ l !…, l

d

dl
lnX~ l !5z„ū~ l !…. ~69!

Using dimensional analysis and Eq.~68! it is easy to show
that the profile satisfies the relation

F~z;u,r,a;m!

5~m l !d/2@rX~ l !#21/4

3F„m lz@rX~ l !#21/2;ū~ l !,1,m la@X~ l !/r#1/2;1….

~70!

For small l the scale dependent coupling coefficientū( l )
tends to the fixed pointu!5(4/3)e1O(e2) and the function
X( l ) is asymptotically proportional to a power ofl , namely,

X~ l !.X0l
22h, h52

1

2
z~u!!5

22d

3
, ~71!

whereX0 is a nonuniversal scale factor. By choosing the
value

l5@~X0r!1/2/~mz!#3/~52d! ~72!

for the flow parameter we obtain forz@Arm21 the scaling
form

F~z,F0!5F0J~BF0z
~d11!/~52d!! ~73!

with the scaling function

J~x!5x21F~1;u! ,1,ax
21;1! ~74!

@wherea5(4Ae /u!)
1/2# and the nonuniversal constant

B5@~rX0!
1/2me/3#23~d21!/@2~52d!#. ~75!

To derive Eq.~73! we have used the identity

Aeg
25u!~rX0!

3/2me, ~76!

which follows from the flow equations~69! and the initial
condition~40c! to expressa in terms ofF0 , r, u! , X0 , and
m. Note that ford51 there is no adjustable parameter in Eq.
~73! sinceB is unity in this case. The scaling behavior of the
one-dimensional profile was first predicted by Krug@13#.

The reciprocal of the scaling function at first order ine is
given by

J~x!21511
x

a S 11
2e

3
F~1;a/x,e50! D1O~e2!. ~77!

In order to compare this result with the exact solution found
in Refs. @14,15# we have to take the continuum limit of the
exact profile. In Appendix B we show that this limit leads to

Jexact~x!5exp~x2!erfc~x!, ~78!

where erfc(x)5 (2/Ap) *x
`dy exp(2y2) denotes the error

function @29#. The exact scaling function and the one-loop
approximation~77! for e51 are depicted in Fig. 3. The as-
ymptotic form

Jexact~x!21.Apx for x→` ~79!

of the scaling function can be compared with the asymptotic
behavior

J~x!21.
1

a
@11 2

3 e1O~e2!#x'1.086Apx ~80!

of the e expansion at first order fore51. Here and in Fig. 3
we have used the geometric prefactora5(4Ae /u!)

1/2 di-
rectly for e51 ~i.e., without expansion ine) since this pro-
cedure is empirically known to give the best numerical re-
sults @11#.

By a different choice of the flow parameter it is possible
to eliminate theO(e) contribution to the profile completely.
The corresponding value ofl is defined by the equation@see
~64! and ~70!#

m lz@rX~ l !#21/2ln$m lz@rX~ l !#21/2%

2F„m lz@rX~ l !#21/2;m la@X~ l !/r#1/2,e50…50.

~81!

However, this modification has only a small effect on the
scaling functionJ(x)21 at one-loop order.

We conclude this section with the discussion of log-
arithmic corrections to the mean field profile in two dimen-
sions. Fore50, w51 the scale dependent coupling coeffi-
cient ū( l ) is the solution of the differential equation

l
d

dl
ū~ l !5b@ ū~ l !#5

3

4
ū~ l !21O@ ū~ l !3# ~82!

with the initial condition ū(1)5u. For l→0 we find the
asymptotic expression

ū~ l !5
4

3
@ ln~1/l !#21F11OS ln ln~1/l !

ln~1/l ! D G . ~83!

FIG. 3. Solid curve: scaling functionJexact(x)
21 calculated

from the exact profile; broken curve: first order ine; dotted line:
asymptotic behavior ofJexact(x)

21 for x→`.
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A straightforward calculation yields the asymptotic behavior
of the characteristicX( l ),

lnX~ l !5E
1

l dl8

l 8
z„ū~ l 8!….

2

3
ln ln~1/l !1 const ~84!

for l→0, i.e.,X( l );@ ln(1/l )#2/3. In order to sum the loga-
rithmic singularities in the perturbation series we set
l5Ar/(mz) in Eq. ~68! and obtain

F~z,F0!5F0@11const3F0z„ln~mz/Ar!…22/3#21

~85!

;
~ lnz!2/3

z
for z→`. ~86!

This result is valid on length scales that are large compared
to microscopic distances, i.e.,z@L i

21 .

V. SUMMARY AND OUTLOOK

Until now most analytical studies of driven diffusion deal
with closed systems. To maintain a steady state with a non-
vanishing current one usually imposes periodic boundary
conditions in the direction parallel to the driving force@10#.
Since in real physical systems the particles are fed into the
system by a reservoir the effects of boundaries are of great
interest. Using a field theoretic renormalization group ap-
proach we have calculated the density profile in a semi-
infinite DDS with a particle reservoir at the boundary. For
d51 our result is in fair agreement with the exact solution
for the totally asymmetric exclusion model@14,15#. Equation
~85! for the two-dimensional profile is a result that may be
checked by computer simulations.

We plan to extend the present work along several lines:
~1! We have studied the effect of a particle source~or

sink! at z50 assuming a second reservoir to be located at
z5L with L→`. One would also like to consider the inter-
play of the reservoirs for finiteL @14,15#.

~2! In a system with quenched disorder and periodic
boundary conditions a particle is subjected to the same ran-
dom potential after every passage through the system. In this
way the periodicity produces long-range correlations that
make it difficult to compare simulational results with theo-
retical predictions that assume uncorrelated disorder@17#. To
circumvent this problem it would be desirable to consider
disordered DDS with open boundary conditions.

~3! In the case of noncritical DDS the scaling behavior
~73! of the profile can be described by a single exponent,
namely, the bulk exponenth5(22d)/3. This is due to the
fact that the surface densityF0 has the same scaling dimen-
sion as the bulk density. We expect that this is no longer true
if the system is at its critical point. In general the surface
critical behavior is governed by new exponents that cannot
be expressed in terms of bulk exponents.

~4! Another line of extension would be to consider bound-
aries parallel to the driving force.

~5! In Sec. IV we have shown that ford.1 the flat profile
F(z)50 is only stationary in the case of detailed balance
and in the limit of high temperature and strong field. In the
more general case of a lattice gas at finite temperature the

long-range correlations in the bulk give rise to an inhomoge-
neous steady state even forF05Fbulk . @It was already
pointed out by Zia and Schmittmann@19# that the coupling
coefficient (12w) that is responsible for the long-range cor-
relations is dangerously irrelevant for 1,d<2.# This effect
should lead to a modification of the maximum current prin-
ciple @Eq. ~1!#. Finally, it would be interesting to study the
formation of the stationary density profile starting from a
homogeneous initial state.
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APPENDIX A: SURFACE SINGULARITIES
AT ONE-LOOP ORDER

In Sec. IV we have shown that forw51 the perturbation
expansion is free of surface singularities. In this Appendix
we consider the general casew>0.

The Fourier transform of the surface-bulk response func-
tion

xsb~r' ,z;t !5^s~r' ,z;t !r]ns̃ ~0,0!& ~A1!

and the bulk-surface response function

xbs~r' ,z;t !5^r]ns~r' ,t !s̃ ~0,z;0!& ~A2!

may be written in the form

x̂sb~q' ,v,z!5r]z8Ĝq' ,v~z,z8!uz850

1E
0

`

dyE
0

`

dy8Kq' ,v~y,y8!]yĜq' ,v~z,y!

3r]z8Ĝq' ,v~y8,z8!uz850 ~A3!

and

x̂bs~q' ,v,z!5r]z8Ĝq' ,v~z8,z!uz850

1E
0

`

dyE
0

`

dy8Kq' ,v~y8,y!]yĜq' ,v~y,z!

3r]z8Ĝq' ,v~z8,y8!uz850 , ~A4!

respectively, whereĜq' ,v(z,z8) is the free propagator~32!
in Fourier representation~see Fig. 4!. At one-loop order the

FIG. 4. Perturbative contributions to the~a! surface-bulk and the
~b! bulk-surface response function. Here the hatched circle repre-
sents the integral kernel~A5!.
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kernelKq' ,v(z,z8) is given by

Kq' ,v~z,z8!5~lg!2E
k' ,n

@]z8Ĝq'2k' ,v2n~z,z8!#

3Ĉk' ,n~z,z8!1O~g4!. ~A5!

Note thatKq' ,v(z,z8) has to be treated as a distribution
since the calculation of response functions involves integra-
tions ofKq' ,v(z,z8) with respect toz andz8.

Before we calculate the singular part of the kernel explic-
itly it is helpful to discuss the general form of the divergen-
cies one has to expect. First,Kq' ,v(z,z8) has a nonintegrable

~for d52) singularity if z→z8. This divergency occurs in

the translationally invariant bulk theory as well as in the
semi-infinite model and has to be cured by a renormalization
of r. The form of this singularity follows from dimensional
analysis and the isotropy in the directions parallel to the
surface. SinceKq' ,v(z,z8);lm2 and z;Arm21 the ~di-

mensionally regularized! bulk singularity contained in
Kq' ,v(z,z8) is proportional tolrd8(z2z8). The breaking

of translational invariance by the boundary generates addi-
tional divergencies forz, z8→0 @1#. Upon dimensional regu-
larization they are proportional tolrd(z)d(z8).

In order to compute the coefficients of the distributions
we apply the kernel to exponential test functions. At lowest
order ing2 we have

E
0

`

dzE
0

`

dz8Kq' ,v~z,z8!e2bz2b8z85
lg2m2e

eAr

G~11e/2!

~4p!d/2 F31w

8

b8

b1b8
1
w21

8 G1O~e0,g4!. ~A6!

The inverse Laplace transform of this expression with respect tob andb8 is given by

Kq' ,v~z,z8!5
lg2m2e

eAr

G~11e/2!

~4p!d/2 F31w

8
d8~z8uz!1

w21

8
d~z!d~z8!G1O~e0,g4!, ~A7!

where we have introduced the definition

E
0

`

dz8d8~z8uz! f ~z8!52 f 8~z!. ~A8!

@This distribution is equivalent tod8(z82z) if we define
d(2z)[0 for z>0.# It is now straightforward to calculate
the singular parts of the response functions at one-loop order.
Inserting~A7! into Eqs.~A3! and ~A4! we find

x̂sb~q' ,v,z!5
1

l F11
u

e S w21

8
1
31w

16

kz

Ar
D

1O~e0,u2!Ge2kz/Ar ~A9!

and

x̂bs~q' ,v,z!5
1

l F11
u

e

31w

16

kz

Ar
1O~e0,u2!Ge2kz/Ar.

~A10!

To obtain renormalized response functions one has to ex-
press the coupling coefficientsr ands by their renormalized
counterparts@see Eq.~39!# and absorb the remaininge poles
into renormalizations of surface fields, i.e.,

@ x̂sb#R5Z̃1
21/2x̂sb , @ x̂bs#R5Z1

21/2x̂bs ~A11!

with

Z̃1511
w21

4

u

e
1O~u2!, Z1511O~u2!. ~A12!

The renormalization factorZ1 is unity at every order of the
perturbation series since the primitive surface divergencies in
Kq' ,v(z,z8) are proportional tod(z)d(z8). Due to the Di-
richlet boundary conditions this distribution has no effect in
Eq. ~A4!.

APPENDIX B: THE EXACT PROFILE
IN THE CONTINUUM LIMIT

One of the simplest examples of a DDS is the totally
asymmetric exclusion model in one dimension@30#. For this
model with nearest neighbor hopping and open boundary
conditions the density profile has been calculated exactly by
Schütz and Domany@14# and Derridaet al. @15#.

The model is defined on a chain ofN sites each of which
is either occupied by a single particle or empty. At each time
step one chooses a random lattice sitep, 1<p,N. If this
site is occupied by a particle (np51) and its right neighbor
site is empty (np1150), the particle will jump fromp to
p11. In the model with open boundary conditions particles
are injected with ratea at the left boundary and leave the
system with rateb at the right boundary.

For a,b>1/2 the bulk density takes the critical value
nc51/2 and the system carries the maximum current. Since
we wish to compare thee expansion of Sec. IV with the
exact profile we letN→` in order to eliminate the influence
of the right boundary. Using the formulas given in the Ap-
pendix of Ref.@14# we arrive at the particle density
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^np&5
1

2
1

2

4p
~2p22!!

~p21!! 2 F12
1

2p~2a21!2
FS 1,32 ;p11;

2
4a~12a!

~2a21!2 D G ~B1!

for a,b>1/2 andN→`, whereF(a,b;c;z) is a hypergeo-
metric function@29#.

To compute the scaling functionJexact(x) from the mi-
croscopic profile one has to take an appropriate continuum
limit. In addition to the distance from the boundary the in-
jection ratea provides the only macroscopic length scale
ja5(2a21)22 in the model. We therefore measurep in
units of ja and let p,ja→` at fixed x25p/ja . For this
purpose it is convenient to use the integral representation

F@1,32 ;p11;2~ja21!#

5pE
0

1

~12t !p21@11~ja21!t#23/2dt ~B2!

5E
0

p

exp@~p21!ln~12t/p!#@11~ja21!t/p#23/2dt

~B3!

to show that

lim
p,ja→`

F@1,32 ;p11;2~ja21!#5E
0

`

e2t~11t/x2!23/2dt.

~B4!

For largep the prefactor in Eq.~B1! is given by

2

4p
~2p22!!

~p21!! 2
5

1

2App
@11O~1/p!#. ~B5!

A straightforward calculation now yields in the continuum
limit defined above

^sp&5s0exp~s0
2p! erfc~s0Ap!, ~B6!

where we have expressed the occupation numbers in terms of
the spin variablessp52np21, s052a21.
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